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According to classical boundary-layer theory, when two uniform parallel streams 
are brought into contact at  large Reynolds number (R)  the location of the dividing 
streamline remains indeterminate to O(R-4) if both streams are subsonic and 
semi-infinite in extent. It is demonstrated here that this indeterminacy is a 
fundamental property of such a system which cannot be resolved, as Ting 
(1959) proposed, by balancing the pressure across the viscous mixing region to 
higher order in R. 

1. Introduction 
It is well known that in the laminar mixing of two uniform parallel streams 

at large Reynolds number (R)  a thin viscous boundary layer forms between them 
downstream of their point of contact. Because this mixing region is of only O(R-4) 
in thickness, it is natural to assume when analysing its structure that the parallel 
streams are effectively semi-infinite in extent. Consequently, the problem of 
mixing between two uniform semi-infinite streams has received considerable 
attention over the years, since it is believed to model a variety of mixing pheno- 
mena. 

It was established some time ago that, in the viscous mixing region referred to 
above, the appropriate laminar boundary-layer equations admit a Blasius-type 
similarity solution which has been studied in detail by numerous investigators 
(Gortler 1942; Keulegan 1944; Lessen 1949; Lock 1951; Crane 1957). This solu- 
tion is not unique, however, because, although the similarity form of the boun- 
dary-layer equation is of third order, the only apparent boundary conditions are 
that the longitudinal component of the velocity at the upper and at  the lower 
edge of the boundary layer should match the velocity of the corresponding uni- 
form stream. Moreover, the additional boundary condition required for a unique 
solution cannot be obtained for this problem by the usual procedure of balancing 
the O(R-4) component of the pressure across the boundary layer since this con- 
dition is identically satisfied when both streams are subsonic. As a result, an in- 
determinacy which corresponds to an O(R-4) displacement of the streamline 
(Y = 0) separating the two streams arises in the solution. 

To resolve this non-uniqueness, Ting (1959) derived a compatibility relation 
to serve as the third boundary condition by carrying out the analysis to higher 
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FIUURE 1. Mixing of two uniform semi-infinite streams. 

order in R and matching the pressure to O(R-1) across the boundary layer. In  
performing this higher order analysis, however, Ting, did not consider higher 
order corrections to  the position of the Y = 0 streamline, with the result that his 
compatibility condition is incomplete. For this reason, and also because Ting’s 
result has been referred to in a number of studies dealing with various mixing 
problems (Ting & Ruger 1967; Casarella & Choo 1968; Mills 1968; Viviand 
1969), we shall here re-examine in detail the higher order solution to the relevant 
equations for the case of two semi-infinite uniform incompressible streams having 
identical physical properties, and shall demonstrate that when all higher order 
effects are included the position of the dividing streamline remains indeterminate. 
Specifically, we shall show that balancing the pressure across the boundary layer 
to  higher order does not allow the O(R-4) displacement of the dividing streamline 
to be calculated since unknown constants which correspond to  additional higher 
order effects appear in the appropriate expression for this pressure balance. 

2. Re-derivation of Ting’s compatibility condition 
In analysing this laminar mixing problem, variables are rendered dimensionless 

in the usual manner using the uniform velocity U;  of the faster moving stream 
and a characteristic length I ,  which may be chosen arbitrarily owing to the 
absence of a length scale in the problem. The Reynolds number is then given by 
R = UJ;l/v, where v is the kinematic viscosity of the fluid. Also, the velocities 
of the two uniform streams become unity and U,, respectively, with U, < 1. 

The basic features of the flow for this case are, of course, well known. As de- 
picted in figure 1 , two irrotational inviscid streams I and 11, of essentially uniform 
velocity, are separated by a viscous boundary layer 111, which is of O(Rd) in 
thickness. To first order, the flow in this boundary layer is described by Lock’s 
(1951) solution, except that the displacement of the Y = 0 streamline from the 
+x axis must now be included in the similarity variable 7. Since the resulting 
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solution cannot depend on the choice of length scale I ,  the position of the dividing 
streamline y = $(x; R) is given by 

$(x; R) = (~/R):{a,+a,(Rz)-4+ ...} 

and thus, in order that 7 = 0 along the Y = 0 streamline, 

7 = (R/x)t  [ Y - $ b  R)1- (2.2) 

In  (2. l), the a,'s are unknown constants which must be evaluated if the solution 
is to be unique. This correction to Lock's (1951) solution corresponds to that 
presented by Ting (1959), except that he considered only the first term in (2.1). 
Ting then sought to evaluate a1 by matching the pressure across I11 to higher 
order in R since, as he showed, the O(R-4) flow in I and I1 identically satisfies 
the O(R-*) pressure balance across 111. 

To be sure, it might appear reasonable to assume, as Ting did, that the coeffi- 
cients of all the higher order terms in (2.1) vanish since, for the case considered 
here, in which the two streams are brought into contact at x = 0, the vertical 
displacement of the dividing streamline is certainly zero at  the origin. Such an 
apriori assumption would be incorrect, however, because (2. 1), being an asymp- 
totic expansion for Rx 9 1, ceases to apply within the leading-edge region 
0 < Rx < 0(1) ,  where viscous forces predominate. Thus, the coefficients in (2.1) 
must be determined either from a higher order analysis in the boundary-layer 
region Rx 9 1, or, failing this, by matching (2.1) to anappropriate inner solution 
that applies near the leading edge. The derivation of the latter, however, presents 
such apparently insurmountable difficulties that this second approach is rarely, 
if ever, employed. 

One is forced, therefore, to proceed with the higher order analysis in the bound- 
ary-layer region, where the absence of a characteristic length scale for the prob- 
lem requires the solution to have a self-similar form to all orders of approxima- 
tion. Thus, defining the similarity variable 5 = y/z for the inviscid regions, we 
obtain the expansions 

(2.3) 

(2.41 

(2.5) 

YI(G 0 = XC + 
YII(X, tr> = Gx5+ (4W{f21(C) + (Rx)-V22(5) + * *  .I, 

yIII(x9 7) = (x/R)g{f31(7) + (RX)-'f32(7) + 

{fll(C) + (R4-4f12(C) + * .>, 

together with the associated boundary conditions 

YI(x, 0) = YII(x, 0) = 0 for x < 0, 

YIII(X, 0) = 0, 

TI(% 5 ) l p o .  ~ ~ I I I ~ w l ~ \ p m ~  
YII(% 6)1g+o- ++YIII(X, 7ll7+--o0, 

YI(x, C )  = 4, Y&, 5 )  = U,xC as x -+ -m, 
where the double-headed arrows imply matching in an asymptotic sense. f31(7) 
in (2.5) corresponds to Lock's (1 951) solution and satisfies 

2f;i-1-f3& = 0, f31(0) = 0. f&(m) = 1, fi1( -00) = Q. (2.6) 
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Forpurposesofmatching (2.3)and(2.4)asc-t Owiththeformsof(2.5)asq-t-t 00 

respectively, we require the asymptotic forms 0ff3,(q), which, in view of (2.1) and 
(2.2), become 

q-p1 = (Rz)i5-(a,+P1)-a2(Rx)-*+ ... as q - f c o ,  I U,? - p2 = U,(Rx)t 5- ( U2a, + p2) - U,a,(Rx)-* + . . . as q -+ - 00, f31(?) ( 
(2.7) 

where P1 and /3, are positive constants determined from the integration of (2.6). 
Then, using (2.7) to determinef,,(O) andf,,(O), we can readily show tha t  

I (2.8) 
J2 

1 
fll(5) = --b1+rB1) [(1+czP+sgn~1*, 

which clearly indicates that the O(R-4) pressure balance aoross I1 is trivially 
satisfied sincef;,(O) = &(O) = 0. 

To resolve the indeterminacy of the solution forf3,(q), Ting (1959) integrated 
they component of ths momentum equation across the boundary layer, thereby 
obtaining an expression for the O(R-l)  pressure drop. Then, by matching this 
pressure term at each edge of the boundary layer to  that in the adjacent free 
stream, he derived a compatibility condition for the unknown coefficient a,. 
Following this procedure, and using the above expansions, yields 

(2.9) 

which corresponds to Ting's result when the right-hand side vanishes. Although 
Ting argued that f12(<) = f i 2 ( < )  =- f32(7) = 0, we shall now demonstrate that this 
is not the case and that, in fact, additional unknown constants appear in (2.9) 
and preclude the unique evaluation of a,. 

We begin by considering the second-order boundary-layer equation which, 
through substitution of (2.5) into the x momentum equation in the usual manner, 
becomes 

(a1 +PA2 - (U2.1 + P 2 ) 2  = 8[ f ;2 (0 )  - U2f;z(O)l, 

(2.10) I 'f;; +f 31 f;l +f il f i 2  = O, 

f32(O) = f A 2 ( 0 0 )  == f ; Z (  - O0) = O )  with 

since f;,(o) and f;,(O) both vanish. Certainly, f3,(q) = 0 is a solution t o  (2.10); 
however, there exists in addition an eigensolution given by (Klemp & Acrivos 
1972) 

where K is a constant which, as is usually the cme with boundary-layer problems 
of this type, can be determined only by examining the details of the flow in the 
vicinity of the leading edge. Although the appearance of an eigensolution gener- 
ally introduces a logarithmic term into the expansion (Van Dyke 1964), this 
does not occur in the present problem since the eigensolution is the only non- 
trivial solution of (2.10). 

Turning now to the second-order solutions for the inviscid streams, we find 
that by matching (2 .3)  and (2.4) to (2.5) in their respective regions of overlap, 

f32(7) = K[f&(?)/ f  - '1, (2.11) 
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and using (2.7) and (2.11) as 7 -+ & 00, we obtain the necessary boundary con- 
ditions for the harmonic functions flz(<) and f z 2 ( < ) ,  which thereby become 

Consequently, (2.9) reduces to 

Clearly, since both the higher order displacement of the Y = 0 streamline and 
the eigensolution of the second-order boundary-layer equation introduce addi- 
tional unknown constants in (2.13), a1 cannot be evaluated from this expression. 
We conclude, therefore, that if the two uniform streams are indeed semi-infinite 
in extent then a1 remains unknown as far as this analysis is concerned. This same 
conclusion also applies to subsonic compressible flows. 

3. Discussion 
The analysis presented above demonstrates that a fundamental indeterminacy 

exists in the solution to the problem of the subsonic mixing of two uniform paral- 
lel semi-infinite streams, at least within the framework of classical boundary- 
layer theory. In spite of this result, however, the problem is not necessarily ill 
posed, for, although any value of a, appears to be consistent with the boundary- 
layer solution (which, of course, ceases to apply near the point where mixing 
begins), it might still be possible, as mentioned earlier, to determine a1 by con- 
sidering the flow within the leading-edge region, 0 < lRxl < O( l ) ,  i.e. in the close 
proximity of the origin. Then, in the absence of any outer boundaries whatso- 
ever, this value of a1 would continue to apply throughout the flow field. 

Of course, in all physical problems the streams are not truly semi-infinite in 
extent; in fact, regardless of their actual widths, at  least one of the bounding 
surfaces will be located within a distance of order one from the viscous mixing 
layer after the system has been rendered dimensionless. Thus, to obtain a unique 
solution for flow in the mixing region between the two uniform subsonic stieams, 
one must abandon the assumption that these are effectively semi-infinite. Then 
if their finite width is properly taken into account, the O(R-4) component of the 
pressure will no longer balance identically across the mixing layer and, conse- 
quently, the third boundary condition can be determined from the O(R-*) 
analysis and is similar to that presented by Ting (1959) for cases in which one 
or both streams are supersonic. This solution procedure is quite straightforward 
and has been applied by Klemp (197 1) to a mixing problem involving two uniform 
streams of finite width. 
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